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Abstract. An infinite number of form-invariant symmetries is obtained and a one-to-one
comrespondence between symmetries and conservation laws is established for the non-isospectral
and variable coefficient generalizations of both the Kdv and the MKdv equations, Two families
of symmetries and their Lie algebraic structures are constructed. Some interesting facts about
their Hamiltonian structures are presented.

1. Introduction

In [1] we studied the non-isospectral and variable coefficient Kdv equation (h-f-Kdv) by
the use of Bicklund transformation to construct explicit solutions including solitons with
unusual dynamics. The initial value problem of this equation was solved by the inverse
scattering method [2]. Non-propagating solitons with their decompositions and interactions
were presented. They provide mathematical models for oscillating and standing solitons
observed experimentally in [3].

The aim of this article is to investigate the symmmetries, conservation laws and
Hamiltonian structures of both the A-7-Kdv and the h-z-A-MKdv equations. It is well
know that a necessary condition for the integrability of these equations is the existence
of an infinite number of symmetries and the conservation laws contain a iot of important
knowledge about the equation under consideration. For the A-1-Kdv equation, it is shown that
there exist an infinite number of form-invariant symmefries. A one-to-one correspondence
between conservation laws and symmetries is established explicitly. Using the Miura
transformation, the same conclusions is shown to be true for the A-r-A-MKdv equation.
Furthermore, some Lie algebraic structures of these symmetries are investigated. Lastly, we
obtain the second Hamiltonian structure (w.r.t. the standard Kdv) of the k-1-Kdv equation
and the first Hamiltonian structure of the 4-r-A-MKdV equation. It is interesting that the bi-
Hamiltonian structures here are elusive and they are replaced by some ‘hidden” Hamiltonian
structures.

Specifically, we are interested in the following A-r-Kdv equation:

Puy=0 (1)
where

P(u) = u; + ko(upgy + 6y} + dkiuty — B Qu + xu,)
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and the following h-r-A-MKdV equation:

Gy =0 @)
where

(W) = Uy + ko(Uszs + 6(2 — vD0,) + 4kyu, — (v + xv,).

In the above equations, ko, ki, # and A are arbitrary functions of z, and A satisfies the
non-isospectral condition

Ar = 2R, &)
Under the Miura transformation

u=i-—uv, — v 4)
the following equality is obtained:

Plu) = (~8 — 2v)Q(v). (5)
In what follows we shall employ the following notation:
ai
%= o

E
l= f
—00

x ¥ 38
Butr) = iZ=l:(—1) 2 Jwy, (wix = d w).
2. Symmetries

The symmetry ¢ of (1) satisfies the equation
P =0 (6
where

Pu(L) = § + kobrxx + (Bkou + a4k = hx) 4 (Gkouy ~ Zr),.
The symmetry ¢ of (2) satisfies the equation

Qu(t) =0 Q)
where

Qu(t) = T + koTax + (Bko(A — v*) + 4ko — ha)Te — (12kov0, + A)T.
Theorem 2.1.

Pu(§) = (—8: = 2v) Oy () &
where

¢ = (=3 —20)7. ®)
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Proof. Since

Qw)=0

&= —Ty — 20,1 — 2uT

by = —Tyy — 2u,T ~ 20T,

$30 = —T3x — 2UnT — OUg Ty — OUx Ty — 20T3,

the theorem can be proved in substituting them into the expression of P,().
Corollary. 'There exists a one-to-one correspondence of symmetries between (1) and (2).

We now construct recursion formulas of symmetries of (1) and (2). Assuming that
&0, €14 -y £n are symmetries of (1), let

¢nvt = CXP(—Z-[ h) (anui, + bnuxax_lfn + Cnl_:n,xx)

with fp = exp (-— f h) uy. We shall determine constants a,, b, and ¢, in order for £, to
satisfy (6) if ¢, does.
Under the boundary conditions

";n.h:_"o (x_:’j:w,ﬂ>0‘l=0.l,...)
we have
37 s + koln.xx + (Bko + 4ky — hx)n — R3¢, =0

Snx + kofn.:u + (6kou + 4k — hx)fn,xz + (12kqux — 3h)§n,x + 6k0”xx§n =0

$n2xe + Kobn,sx + (6kou + 4k — hxYn s + (18kotty — 4R n ox + 18kott s s Sn x + Gkoltzxn
=0

Uy + kotiay + (6kgut + 4y — BxYiuy, + (Bkouy ~ 3)u, = 0.

Since

Snre = —2hE 40 + exP("th) [Q,,(u,é’,, +uly.) + brz(uxtax_lfn + uxa;lfn,r) -+ Cnfn.th]
fntlx = exP(_Z/h) [an (Uxln + 4&nx) + Bn (uxxax_[‘:n +uxln) + Cn‘rn.Sx]

Enelan = 3XP("2.[’1) [an(uxx‘:n + 2ty nx + Ui xx)
+ bn(“Bxax_[;n + 2up3ln + txlnx) + Cnfn.d»x]
Enil3x = exp(—th) [an syl + 3“xx§n.x + eyl + ugn.Sx)

+ bn(u4xa;1§n + duzln + 3uxx§n.x + uxtn.xx) + Cn;n,ﬁx]

therefore

Pu(Cnsi) = 3ko eXP(—zf h) [(bn ~ 20 )U3x8n

+an + by — 6¢y )it yy b x + (an ~ 4Cn)ux§n.xx]-



410 W L Chan and Xiao Zhang
If we take a,=4¢,, by=2¢,, and c,=1, we obtain

Epet = cxp(_th)(af +4u + 20, 07N (10)
and

Pu(‘:n-i-]) =0.

That is, the recursion formula (10) yields a sequence of solutions for (6) and it implies the
following fact.

Theorem 2,2. The h-t-Kdv equation (1) has an infinite number of form-invariant
syminetries.

The recursion formula for the symmetries 7, of the equation (2) also exists and can be
derived from (4), (%) and (10).
Since

Tntl = (-3_: - 2”)“]{n+l
= cxp(——th) (=8, —20) ' 2 + 4 — v — vh)

— 2(xx + 200008 | (—8; — 20)7,
afv = v&f + 20,8 + Uy
8, v% = 28, + 2vu,
6,,;1?;3;"1.! = vxxa;’v + v v,
Furthermore
[82 + 4(A — vy — ¥®) — 2(0ux + 200,)3] 1] (=8, — 20)
= — 82 — 2082 — 400 — v")3, — 8Av + 1200, + 80® + (v, + 200,)8] v
and
(=8 — 20) [8] + 4(A — v®) — 40,8 "v]
= — 82 — 2087 — 4(A — v7)8, — BAv + 1200, + 817 + (v, + 200,39 v
therefore the left-hand sides of above two equalities are equal, and
Tyl = exp(—Zf}z)(Bf + 40 — ¥ —~ 41);3;‘:;)1:,, (11)
with 7o = (~8; — 20) "V exp (= [ 7) u, = exp(— [ #) v..

Theorem 2.3. The h-t-A-MKdV equation (2) has also an infinite number of form-invariant
symmetries.

Remart. The operator

O, = exp(—?. f h) (82 + 4u + 2u,8]") (12)
is a hereditary strong symmetry of (1} and the operator
o, = exp(-—Z f h) (32 + 4k — v?) — 40,87 Tv) (13

is a hereditary strong symmetry of {2).
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Two families of symmetries {,}, {£.} of (1) are

o= exp(—fh)ux,

tn = P50), ...

§0=3kca+%exp(2fh),...
E, =3kt + ¢:(% exp(th)),... .

The corresponding two families of symmetries {1}, {o,} of (2) given by (9) are

g = exp(—fh)ux,...

T = Py(%0), . ..

0p = 3kzo + (—8, — 2v)~! (%exp(2/ h)), .

On = 3k, + D" ((—a,, —2w)”! (%exp(Zf h))) e
N p)

In light of the hereditary recursion operators (12), (13), we can immediately obtain the
following result, as has been shown by [11].

where

Theorem 2.4. bw,En(m,n =0,1,2,...) satisfy a Lie algebra

[fm. £n]=0

[m, §r] = @m+ Dmsn-1 (m-+nzl)

(&ms En] = 2(m — R)ppn-1 (m+n21)
and Ty, op(m,n =0, 1,2,...) satisfy a Lie algebra

[T, T2} =0

[T, 0] = (2m + DTpin— (m+n21)

(Om» 0a] = 201 — MOpiae (m+n=1)

where

fa.b] = a'[b} — b'al.

Remark. Each of the following equations:
Kdv, MKdV; GKdV, GMKdV (see [3,6]); h-t-KdV, h-t-A-MKdV

has two families of symmetries which satisfy the same Lie algebraic structure. Thus, these
might imply that the three Kdv equations can be mapped to one another by some non-
singular transformations and similarly for the three MKdv equations. We shall address these
questions elsewhere.
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3. Symmeiries and conservation laws

We shall establish a one-to-one correspondence between the symmetries and the conservation
laws of both the k-t-Kdv and the A-7-A-MKdV equations.
In the spirit of [4], we prove some lemmas which will be useful in what follows.

Lemma 3.1, For an arbitrary function (¢, x} such as I{t, x) — 0 (sufficiently fast for any
fixed ¢ as x — 00}, we have

fl(t x¥ugt. wydx = —fg(t wHel(t, x))dx

e=0

Proof.

i f g(t, w+gi(t, x)) dx
de

= f(z 3, (2, w)&,-xl(t,x)) dx
e=0
= fi(l, )-')(Z(—l)iaixaw;,g(ts w)) dx

= f 1@, x)8,g(t, w) dx.

Lemma 3.2, If w satisfies an evolution equation

w, = L{t, w)
then
g:(t, w) = ifg(t, w+eL{z, X)) dx
de =0
and
d
f (s — Gug))i(t, x) dx = f Sug LG w el )| d.
=0
Proof.
d
8o w Ll w)) = Bglt, W)+ Y B, 86, W) L(t, w)
= 8,8(t, w) + Y 8, 8(¢, w)3, 8w
= g,(t, w)
and
f Bz ~ (Bug))I(t, x) dx
d d =0
= ——f,g(t +o,w+el(t, o)+ al(t,w+el))dx
de do e=0

=0

dcxdsfg(t'*'a w+el(t, x)+al(t, w)) dr

=0
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d
u— E-E f[(arg + Z aw.xga,'xL(t! w +£l))
—(a,g + D 0u. 88 L0, w))] dx

dx.

=)

e=0

= f&wgd%l.(r,w-{-el(t, x)}

Lermuma 3.3. For any function f{¢, w), we have
80 F(2t, w) =0.

Suppose that a function g(z, w) satisfies the boundary condition
gt w)y—>0

(for any fixed t as x — Xoo) and if §,g(¢t, w) = 0, then
g(t. w) = 8:(—X(r, w))

for some function X {#, w).

Proof. Take g(t, w) = 3 f(z, w) in lemma 3.1 for a proof of the first part. For the second
part, one may refer to the proof of lemma 3.2 in [4].

Lemma 3.4. If u is a solution of (1), then the following egquality holds
8ug: = (8u8)e + kod28,8 + (Gkou + 4ky — hx)3:8,8 + hé,g.

Proof. Take
L(t, u) = —kolltgre + Oun,) — 41, + hQRu + xu,)

in lemma 3.2, then

= —kolyyr — (Gkou + 4k — hx)l; — (6kou, — 2h)l.

e=(

iL(t, u -+ el(t, x))
de

Therefore

f (Bugs — Gag) (2, x) dx
= f sug(_kﬂlxx.t - (ﬁkﬂu + 4k] - kx)l; - (Gkgux - 2’1)1) dx

= [ 16,2 0a035.5 + o+ 4ks — hx)ubug + h,8) d
so that the lemma is proved.

Lemma 3.5. If v is a solution of (2), then the following equality holds
808t = (8,8); + kod28,8 + (Bko(A — v7) + 4k — hx)d:8,8.
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Proof. Take
L(2, 1) = —ko(Uexx + 6( — v¥)u,) — dkyvy + A + x;)
in lemma 3.2, then

== —kolyry — (6ko(A — v2) + 4k; — hx)l, — (12kov, — R).

=0

iL(t, v+ el{t, x))
de

Therefore

f (Bogs ~ (50, x) dx

= f 808 (—Kolens ~ (Gko(h — 17) + 41 — k)L, — (12w, — R)Y) dx

= f I, x) (ko®>8ug + (Bko(r — v?) + 4k — hx)3,8,8) dx
s0 that the lemma is proved.

Now we shall establish a close relationship between the symmetries and the conservation
laws in the following two theorems.

Theorem 3.1.  Suppose the two functions ¢(z, u}, T(¢, u) satisfy

¢ =exp(2fh)a,a,,r 4

then ¢ is a symmetry of (1) if and only if T is its conservation density {in the sense of [4]).

Proof. By equation (14), we have

F)= cxp(th) (8:(6.T) + kgB;’ERT + (Okou + 4k, — hx)8:8,T + h&,T). (15)

If T is a conservation density, then there exists a function X (¢, ) satisfying T, + 8. X(t, u) =
0, then §,T; = 0 by lemma 3.3; therefore, by lemma 3.4,

(8,T); + kod28, T + (6kou + 4k — hx)3,8,T + h8, T =0
so that P,({} =0, i.e. ¢ is a symmetry of (1).
If ¢ is a symmetry of (1), i.e. P,(¢) =0, then by (15) and the zero boundary conditions,

we have
(8. T)¢ + k828, T + (bkou + dky — h1)3.5, T + hé, T = 0.
Furthermore by lemma 3.4 and lemma 3.3, there exist X (¢, #), such that
L+8:X(t,u)=0.

Similar to the above, we have the following theorerm.

Theorem 3.2. Suppose the two functions 7, K (¢, v) satisfy
T =&8,K (16)

then 7 is a symmetry of (2} if and only if K is its conservation density.

Combining the above facts, we have the following theorem.
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Theorem 3.3. For the h-t-KdV equation, there exists an infinite number of conservation
laws and there also exists a one-io-one correspondence between the symmetries and the
conservation laws. This is also true for the h-f-A-MKdV equation.

The first three conservation laws of (1) are given as follows:

1 ([ 1)

X, = exp(— f h) [ko(txx + 3u?) + dkyu ~ Fxu]

¢ =exp(—3fh)%u2

Xp = exp(—th) [kg(uuxx +24° — %ui) + 2kqut — %hxuz]

T, = exp(—S fh)(u3 - 3ud)

X3 = exp(—S f h) [koBulus: + Ju2, + Su* — 6unl — wpnsyy)

® iy (du® = 2ul) — hx(v’® — Lud)].
The first three conservation laws of (2) are given as follows:
Ki=uv

Xy = ko(ver — 20°) + (4k) + 6koA)v — hxv

Ky = exp(—/k)%vz
X, = exp(— fh) [ko(vuzz — 3v* — J02) + (2k1 + 3koA)® — Lhxv?]
Ki= exp(—-S f h)(u“ + vf)

X = exp(—S f fz) [ko(4v3vx_c + 20, Uppy — 40% — 12021,'3 - vix)

+ (4ky + Gkoh)(0* + v2) — hx (v + 0D)].

4, Hamiltonian structures

It is well known that both the Kdv and the MKdv equations have bi-Hamiltonian structures,
but for the #-1-Kdv and the A-t-A-MKdV equations there is some interesting difference, i.e.
the second Hamiltonian structure of the #-t-Kdv equation and the first Hamiltonian structure
of the h-f-A-MKdv equation are relatively apparant and related. Furthermore, some ‘hidden’
Hamiltonian structures of the f-z-Kdv equation are found. They reduce to the usual bi-
Hamiltonian structures when h = 0, i.e, when the equations are isospectral.
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4.1. The second Hamiltonian structure of the h-1-Kdv equation
Define the Hamiltonian function

H, = f(—%kouz — 2k + $heu) dx
and the Poisson Bracket

{o, 0}, = f&u o Db, e

where
Dy = 8+ 2(udy + deu) = 82 + dud, + 2u,.
Since
S . Hy = —kou — 2k + -;-hx
{u, Hy by = (82 + dudy + 2u,)(—kot — 2k; + §hx)
= kgt + Oury) = dhyu, + h2u + xuy)
therefore

ue = {u, Hylu.

4.2. The first Hamiltonian structure of the h-t-h-MKdv equation
Define the Hamiltonian function

H,= f ($ko(v? + v*) — (21 + 3kod)v? + Lhxv? + Thv) dx
and the Poisson Bracket

[o,0}, = f&u o D5,

where
D1 = 8,.
Since
SuHy = —koVex + Zkov® — (dky + 6koA)v + hxv + Lk
{v, H,}y = 8 (—kouny + 2kov® — (4ky + 6koi)v + hxv + k)
= —ko(Vxz + 6k — v9)02) — 4kyv; + A + xv,)
therefore

Ur = {U, HU}LI-

4.3. Connection between two Hamiltonian structures

We shall show how to obtain the second Hamiltonian structure of the h-t-Kdv equation from
the first Hamiltonian structure of the -f-A-MKdV equation via the Miura transformation.

Lemma 4.1.
iy = 2hA 4+ (-3, — 2vdv,. (17N
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Lemma 4.2.
{_ax - ZU)&.HH = vaHu + 4k0A.U. (18)
Proof.
(=8 + 20}, H, = (=8, + 2v)(—ko(h — vy — v°) — 2k, + Lhx)
= —kovyy + 20’ — kohv — Akyv + hxv + Ak
= 8y Hy + dkgAv.
Lemma 4.3.
Dy = (-8, - 20}Dy (9, + 2u) + 4A0,. (19
Proof.

Dy = 83+ 4(u — A)3; + 2u, + 478,
=02 — 4(v, + V)8, — 2(vyy + 200;) + 48,
= (=8, — 2u)(—87 + 203, + 2u,) + 4r5;
= (—8 — 2v) Dy (3, + 2v) + 4Ad,.

Theorem 4.1. The second Hamiltonian structure of (1) can be derived from the first
Hamiltonian structure of (2), ie. given H, and {e, e}, with D; of (2), and equations (17,
{18) and (19), we can determine H, and {e, o}, with D,.

Proqf.
(i) Determination of §,H, or H, according to (18) and H,.
Since

8uHy + dkodv = (=8, + 2v)(—kou ~ 2k + 3hx)
then we can choose
8y Hy = —kou — 2k + hx.
Hy = f(—%kouz — 2kyu + $hxu) dx,
(ii) Determination of {e, e}, according to (17), (18), (19) and {e, o},.
Since
=2+ (=3 — 20}y,
= 2hA + (=8, — 2v)D1 (=3, + 20)8, H, — 4kohv)
= (D3 — 48,8, H, — (-8, — 2u) D1 {4kohv) + 200
= Dyd, H, + dhkou, — 2h) + dkoh(vy; + v,) + 20
= D26u H,

therefore, we can define
{0, 0}, = fau ® D35, @ dx

so that

u, = {u, H,},.
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4.4, Some hidden Hamiltonian structures

(i) The hidden Hamiltonian structure of A= 7.

Let
w=A"Ty =exp(—fh)u
then w satisfies the equation
Wy + ko (Waxe + 6 wwg) + 4w, — A(w + xw,) =0
and choose
H:= / [—kokilw3 + -;-kgwf — 2% w?+ %faxwz] dx
[o, 0} = faw e Db, e dx
we have
wy = {w, H}.

(i1) The hidden Hamiltonian structure of A-in.

Let
w= A"ty = exp(—%fh)u

then w satisfies the equation

w; -+ o(Wyaz + 6A3 ww,) + dhyw, — h(w + xw,) = 0

and choose

H =f—-1._;w2 dx

o, o} = faw.Dgaw. dx
where

Dy = kod? + koAt (wd; + dw) + ey 85 — h(xds + :x)
we have

wy ={w, .H}.

Remark. When h =0,k =0 and kp = 1, the above results clearly give the first and the
second Hamiltonian structures of the standard Xdv equation,
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Appendix. Proofs of Hamiltonian operators for Dy, D; and Ds

It has been proved that D), D, are Hamiltonian operators [9, 10]. To prove that D3 is a
Hamiltonian operator, we need only to check the Jacobi identity, i.e. the following equality
holds:

AAV(DAa=0  (modd,)

where J = Dj (see [9, 10]).
Since

Jou = kootzex + (dkord w + 4k) — hx)a, + (2kordw, — e
Vyald) = dkord Jeed, + 2kori, (Ja)

therefore
o A Vig(J) Ao = dkohF @ A Ja Aoty = 4KERS B, Aty A )

so that D5 is a Hamiltonian operator.
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