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AbstracL An infinite number of form-invariant symmetries is obtained and a one-to-one 
correspondence between symmetries and conservation laws is established for lhe non-isospectral 
and variable coefficient generalizations of both the Kdv and the MKdV equations. WO families 
of symmetries and their Lie algebraic stlwtures are constructed. Some interesting facts about 
their Hamillonian structures are presented. 

1. Introduction 

In [l] we studied the non-isospectral and variable coefficient KdV equation (h-t-KdV) by 
the use of Backlund transformation to construct explicit solutions including solitons with 
unusual dynamics. The initial value problem of this equation was solved by the inverse 
scattering method [2]. Non-propagating solitons with their decompositions and interactions 
were. presented. They provide mathematical models for oscillating and standing solitons 
observed experimentally in [31. 

The aim of this article is to investigate the symmmetries, conservation laws and 
Hamiltonian structures of both the h-t-KdV and the h-t-A-MKdV equations. It is well 
know that a necessary condition for the integrability of these equations is the existence 
of an infinite number of symmetries and the conservation laws contain a lot of important 
knowledge about the equation under consideration. For the h-t-KdV equation, it is shown that 
there exist an infinite number of form-invariant symmetries. A one-to-one correspondence 
between conservation laws and symmetries is established explicitly. Using the Miura 
transformation, the same conclusions is shown to be true for the h-t-A-MKdV equation. 
Furthermore, some Lie algebraic structures of these symmetries are investigated. Lastly, we 
obtain the second Hamiltonian stmcture (w.1.t. the standard KdV) of the h-1-KdV equation 
and the first Hamiltonian structure of the h-t-A-MKdV equation. It is interesting that the bi- 
Hamiltonian structures here are elusive and they are replaced by some ‘hidden’ Hamiltonian 
structures. 

Specifically, we are interested in the following h-t-KdV equation: 

P(u)  = 0 (1) 

where 

P(u) = ut + kn(u,, + ~ u u , )  + 4klux - h(2u + x u ~ )  
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and the following h-t-A-MKdv equation: 

W L Chan and X ~ Q O  Zhang 

Q ( u )  = 0 (2) 

where 

Q(u) = U , + ~ ~ ( U , , , + ~ ( A - U ' ) U * ) + ~ ~ I U ,  - h ( ~ + x u , ) .  

In the above equations, ko, kt ,  h and h are arbitrary functions of r ,  and h satisfies the 
non-isospectral condition 

& = 2hh. (3) 

U = A  - U, - U 
Under the Miura transformation 

(4) 
7. 

the following equality is obtained: 

P(u) = (-& - ZU)Q(U) .  (5) 
In what follows we shall employ the following notation: 

2. Symmetries 

The symmetry C of (1) satisfies the equation 

p m  = 0 
where 

pdt) = CI -F k0L.u + WOU + 4ki - h x ) L  + (6kou, - 2h)C. 

The symmetry r of (2) satisfies the equation 

Qdr) = 0 
where 

Q d r )  = r, + korX,, + (6kdh  - U') + 4ko- hx)?, - (1&uu, + h)r. 

(7) 
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If we take a.=4c.. b,=2.c., and c,=l, we obtain 

W L Chan and Xiao Z h g  

(a; + 4~ + zu,a;l)Cn 

and 

P&+d = 0. 
That is, the recursion formula (IO) yields a sequence of solutions for (6) and it implies the 
following fact. 

Theorem 2.2. The h-f-KdV equation (1) has an infinite number of form-invariant 
symmetries. 

The recursion formula for the symmetries r. of the equation (2) also exists and can be 

Since 
derived from (4). (9) and (10). 

rn+l = (-ax - 2 u ) - ' . ~ + ~  

= exp -2 h (-ax - 2u)-' [a; + 4(h-  U, - u2) ( 1) 
- z(u,, + Z U U , ) ~ ; ' ]  (-ar - 2u)r, 

a;. = .a," + 20,a + U,, 
a,u = vza, + ~ U U ,  

a,U,a;'tJ = u,,a;*v + U,U. 
2 

Furthermore 
[a; + 4(h - U, - 2) - z(u,, + ZVV,)~;~] (-ax - 2 ~ )  

= - a,' - 2~a: - 4(h - u2)a, - 8hu + I Z U V ,  + 8u3 + 4 ( ~ , ,  + ZUU,)~;~U 
and 
(-ax - ZU) [a: + 4(h - 2)  - 4u,a;1u] 

= - a,' - 2va: - 4 ( ~  - &a, - ~ A U  + ~ U U ,  + 8u3 + 4(~,, + 2vu,)a;1u 
therefore the left-hand sides of above two equalities are equal. and 

r,+l = exp -2 h (a; + 4 ( ~  - 3) - 4u,a;'u)r. (1 1) ( 1 )  
with to = (-ax - 2u)-I exp (- J h )  ux = exp (- Jh)  U,. 

Theorem 2.3. The h-f-h-MKdV equation (2) has also an infinite number of form-invariant 
symmetries. 

Remark. The operator 

= exp(-ZJ h)(a: + 4u + 2u,a;') 

is a hereditary strong symmetry of (1) and the operator 

(a; + 4(A - 2) - 4u,a;'u) 
is a hereditary strong symmetry of (2). 
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Two families of symmetries IC,,), &) of (1) are 

The corresponding two families of symmetries [rn), ( u ~ ]  of (2) given by (9) are 

70 = exp(-/h)v,. . . . 

where 

In light of the hereditary recursion operators (12), (13) .  we can immediately obtain the 
following result, as has been shown by [ l l ] .  

Theorem 2.4. Cm, b(m,  n = 0. I ,  2, . . .) satisfy a Lie algebra 

[ tm.  t l  = 0 
[ tm,  L1 = (2m + 1)5m+n-~ 
[ tmy 6 1  = 2(m - n)L+.-i 

( m + n  2 I )  
( m + n  > 1) 

and T ~ ,  un(m, n = 0,1,2,  . . .) satisfy a Lie algebra 

[Tm,  Tal = 0 
[rm, %I = (2m + 1)Tm+n-l 
[ o m ,  on1 = 2(m - ~ ) u ~ + ~ - I  

( m + n  > 1) 
( m + n > l ) .  

where 

[a .  b] = a'[b] - b'[a]. 

Remark Each of the following equations: 

KdV, MKdV; GKdV, GMKdV (see [5 ,6]):  h-t-KdV, h-t-A-MKdV 

has two families of symmetries which satisfy the same Lie algebraic structure. Thus, these 
might imply that the three KdV equations can be mapped to one another by some non- 
singular transformations and similarly for the three MKdV equations. We shall address these 
questions elsewhere. 
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3. Symmetries and conservation laws 

We shall establish a one-to-one correspondence between the symmetries and the conservation 
laws of both the h-f-KdV and the h-f-A-MKdV equations. 

In the spirit of [4]. we prove some lemmas which will be useful in what follows. 

W L Chan and Xim Bang 

Lemma 3.1. 
fixed f as x + +m), we have 

For an arbitrary function l(t, x )  such as l ( r ,  x )  4 0 (sufficiently fast for any 

ProoJ 

Lemma 3.2. If w satisfies an evolution equation 

w, =LO. w) 

then 

and 

d d  
d s  dol 

d d  
dol dE 

= -- / g(t + 01, w + d ( t ,  x )  + olL(t. w + el)) dx 



Non-isospecrral and variable coefliient KdV and M K d v  equations 413 

Lemma 3.3. For any function f ( t ,  w), we have 

s,a,f(r, W )  = 0. 

g( t ,  w )  + 0 

Suppose that a function g ( t ,  w) satisfies the boundary condition 

(for any fixed r as x -+ km) and if S,g(r, w )  = 0, then 

g(t .  w) = &-XO, U))) 

for some function X ( t ,  w). 

ProoJ Take g ( t ,  w) = & f ( t ,  w) in lemma 3.1 for a proof of the first part. For the second 
part, one may refer to the proof of lemma 3.2 in [4]. 

Lemma 3.4. If U is a solution of (I), then the following equality holds 

Lgt = (6ug)t + koa,3SWg + (6kou + 4kl - h x ) a A g  + h8,g.  

Therefore 

/@.a - (&g)t)[(t,x) dx 

= S Sug(-kolxu - ( 6 k ~  + 4ki - hx)I, - (6kou, - 2h)I)  dr 

= 1 K r ,  x)(k&S.g + (6kou + 4k1 - hx)a,S,g -!- h8.g) dx 

so that the lemma is proved. 

L e m m  3.5. If U is a solution of (2) .  then the following equality holds 

6vgc = (8og)c + koa;S,g + (6ko(h - U’) + 4k1 - hx)a,S,g. 
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ProoJ Take 

W L Chan and Xiao Zhang 

L ( t .  'J) = - b ( U x x x  + 6 0  - u*)u,) - 4 k l ~ ,  + h(u + x u , )  

in lemma 3.2. then 
d 

--L(t ,  u + d ( f ,  x ) )  
dE = +Ixxx - (6!&. - U') + 4kl - hx)?, - (12kou, - h)f. 

Therefore 

/(&s' - (&gh)K~,x) dx 

= / G,,g( -k~l , ,  - (6Mh - u2) + 4kl - hx)l ,  - (12kou, - h)!) dx 

= / i ( t , x ) ( k a a : t . g + ( 6 k o ( h - u 2 ) + 4 k t  -hx)a,S,g) dx 

so that the lemma is proved. 

Now we shall establish a close relationship between the symmetries and the conservation 
laws in the following two theorems. 

Theorem 3.1. Suppose the two functions ( ( 1 ,  U), T( t ,  U) satisfy 

5 =exp(2/h)&SuT (14) 

then { is a symmetry of (1) if and only if T is its conservation density (in the sense of [4]). 

ProoJ By equation (14), we have 

Pu(<) =exp@/h)(a,(&T), +ko@,T+ ( 6 b u  +4kl -hx)ax8.T+h8,T). (15) 

If T is a conservation density, then there exists a function X(t, U) satisfying T , + & X ( t ,  U )  = 
0, then 6,T, = 0 by lemma 3.3; therefore, by lemma 3.4, 

(6.T), + b@,T + (6$u +4kl - hx)a,G.T + h8.T = 0 

so that PE({) = 0, i.e. is a symmetry of (1). 

If 5 is a symmetry of (I), i.e. P&) = 0, then by (15) and the zero boundary conditions, 
we have 

(8nT)t 4- koa:&T t ( 6 k o ~  + 4kj - hx)a,&T 3. h8.T = 0. 
Furthermore by lemma 3.4 and lemma 3.3, there exist X ( r ,  U), such that 

r, + a,x(t, = 0. 

Similar to the above, we have the following theorem, 

Theorem 3.2. Suppose the two functions r,  K ( t ,  U) satisfy 

r = aJ,K (16) 

then r is a symmehy of (2) if and only if K is its conservation density. 

Combining the above facts, we have the following theorem. 



Non-isospectral and variable coeficient KdV and MKdV equations 415 

Theorem 3.3. For the h-I-KdV equation, there exists an infinite number of conservation 
laws and there also exists a one-to-one correspondence between the symmetries and the 
conservation laws. This is also true for the h-t-A-MKdV equation. 

The first three conservation laws of (1) are given as follows: 

T, =exp(-Sh)u 

XI = e x p ( - / h ) [ k o ( u , , f 3 u 2 ) + 4 k l u - h ~ u ]  

TZ = exp(-3 1 h ) j u 2  

T3 =exp -5 h (U’ - 4.:) ( J )  
[k0(3u*u,, + fu?, + zu 9 4  - 6uu, 2 - u,urXJ) 

k1(4u3 - 2u:) - hx(u3 - $U:)]. 
The first three conservation laws of (2) are given as follows: 

Kj = U  

X I = ko(u,, - 2 2 )  + (4ki + 6 k d ) u  - hxu 

K2 = exp(- /” , ) $ U 2  

K3 =exp -3 h (u4+u: )  ( S I  
2 2  2 Xp = exp -3 h [k0(4u3u,, + ~ U , U , ~ ~  - 4u6 - 12u ux - uzx) ( S I  

+ (4ki + 6koh)(u4 + U:) - hx(u4 t- U : ) ] .  

4. Hamiltonian structures 

It is well known that both the KdV and the MKdV equations have bi-Hamiltonian structures, 
but for the h-2-KdV and the h-t-A-MKdV equations there is some interesting difference, i.e. 
the second Hamiltonian structure of the h-t-KdV equation and the first Hamiltonian structure 
of the h-t-A-MKdV equation are relatively apparant and related. Furthermore, some ‘hidden’ 
Hamiltonian structures of the h-t-KdV equation are found. They reduce to the usual bi- 
Hamiltonian structures when h = 0, i.e. when the equations are isospectral. 
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4.1. The second Hamiltonian structure of the h-f-KdV equation 

Define the Hamiltonian function 

W L Chon and Xiao Bang  

H, =I(--? I kou' - 2klu + ihxu) dx 

and the Poisson Bracket 

(*, -1" = / 6, Dz&* 

where 

= a,'+ z ( ~ a ,  + a+) = a: + k a ,  + ZU,. 
Since 

6,Hu = -kou - 2kl + fhx 

{U, HU)= = (3: + 4143, + Zu,)(-kou - 2ki + i h x )  
= -ko(U,, + ~uu,) - 4 k i U ,  + h(2u + X U , )  

therefore 

ut (U, Hulu. 

4.2. The first Hamiltonian structure of the h-t-A-MKdV equation 

Define the Hamilionian function 

H, = ( iko(v:  + v4) - (2ki + 3koX)v' + $hxu2 + :hu) dx s 
and the Poisson Bracket 

I., -1, = 1 6 .  DILL. 

where 

D, = a,. 
Since 

&Ha = -kovu + Zkov3 - ( 4 k l +  6 k o A ) ~  + hxv + $h 

{ U .  HvIv =&(-kO~, ,+Zk0~~-(4k~ +6koA)v+hxv+;h)  

= -ko(uLrr + 6(A - ~ ' ) v , )  - 4ktv, + h(v + X U = )  

therefore 

V, = {U, HuL.  

4.3. Connection between two Hamiltonian structures 

We shall show how to obtain the second Hamiltonian structure of the h-t-KdV equation from 
the first Hamiltonian structure of the h-f-A-MKdV equation via the Miura transformation. 

Lemma 4.1. 

U ,  = B A  + (-aL - Z V ) U , .  (17) 
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Proof: 

D~ = a,' + ~ ( L I  - i ) a x  + zU, + 42a, 
= a: - 4(v, + v2)a, - 2(v,, + ~IJU, )  + 4ia, 
= (-ax - 21~)(-a: + 2 ~ a ,  + 2v,) +4ia, 
=(-ax - 2 ~ ) ~ , ( a , + a ~ ) + 4 ~ a , .  

Theorem 4.1. The second Hamiltonian structure of ( 1 )  can be derived kom the first 
Hamiltonian structure of (7% i.e. given H, and {e, 01, with DI of (2). and equations (17). 
(18) and (19). we can determine Hu and (.,e]" with D2. 

Proof: 

Since 
(i) Determination of 6,H. or H, according to (18) and H,. 

6,Hu + 4kohv = (-ax + Zv)(-kou - 2 k r  + ' h x )  2 

then we can choose 

6,Hu = -koU - 2kl + i h x .  

Hu = (-fkau2 - 2klu + f h x u )  dr. s 
(ii) Determination of { o , ~ ) .  according to (17). (18). (19) and [., .].. 
Since 

uI = B A +  (-az - Z V ) V ,  

= 2 h i  + (-ax - 2v)~ , ( ( -a ,  + 2 ~ ) 6 , ~ .  - 4kaiv) 
= ( D ~  - 4ia,)6,~,, - (-ax - Z U ) D , ( ~ ~ ~ A U )  + 2hi  
= D26uHu + 4&Ur - 2hi + 4koi(~,, t U,) + 2hl  
= DzS, H, 

therefore, we can define 

[e, e), = / 6, e D26. dr 

so that 

U I  = { U .  Huh, 
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4.4. Some hidden Hamiltonian structures 

(i) The hidden Hamiltonian structure of A-fu. 
Let 

then w satisfies the equation 

~ t + k o ( w , , , + 6 h ~ ~ w ~ ) + 4 k i w ~  - h ( w + x w , )  = O  

and choose 

H = J [ - k o h ~ w 3 + f f R o w ~ - 2 k ~ w ' + $ h x w  

(e, 01 = JS, DIS,  dx 

we have 

Wt = ( w .  H I .  

(ii) The hidden Hamiltonian structure of h- iu ,  
Let 

then w satisfies the equation 
L ~ ~ + k a ( ~ ~ ~ ~ + 6 h + ~ ~ ~ ) + 4 k 1 ~ ,  - h ( f w + ~ ~ , ) = O  

and choose 

H = 1 -$w2 dx 

(.,.I = j s ,  .Dd, 0 dx 

where 

o3 = koa: + 

wc = [w, H ) .  

(wax + axw) t 4k, a, - $h(xa, + a,x) 
we have 

Remark 
second Hamiltonian structures of the standard RdV equation. 

When h 5 0,kl = 0 and ko = 1, the above results clearly give the first and the 
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Appendix. Proofs of Hamiltonian operators for DI,  Dz and IJ, 

It has been proved that DI, Dz are Hamiltonian operators [9,10]. To prove that D3 is a 
Hamiltonian operator, we need only to check the Jacobi identity, i.e. the following equality 
holds: 

U A v~ . (J )  A 01 o (mod a,) 
where J = 03 (see [9, IO]). 

Since 
a Jor = koorz,, + (4koA.f w + 4kl - hx)or, + ( 2 0 1 4  w, - $h)or 

VJ . (J )  =4koAtJor& +2kohtax(Jor) 

therefore 

o r ~ v ~ , ( ~ ) ~ , ~ = 4 k ~ k o . l . f  U A J U A L Y ~  =4&+ a x ( o r ~ o r x x ~ o r z )  

so that D3 is a Hamiltonian operator. 
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